文章 Articles

Chilling view of a warming world

Standing before a Greenland glacier as it calves icebergs into an Arctic fjord is to witness the raw power of a process that humans will struggle to control. Patrick Barkham reports.

Article image

The wall of ice that rises behind Sermilik fjord stretches for 2,400 kilometres from north to south and smothers 80% of this country. It has been frozen for three million years. Now it is melting far faster than the climate models predicted and far more decisively than any political action to combat our changing climate. If the Greenland ice sheet disappeared, sea levels around the world would rise by seven metres, as 10% of the world’s fresh water is currently frozen here.

This is also the season for science in Greenland. Glaciologists, seismologists and climatologists from around the world are landing on the ice sheet in helicopters, taking ice-breakers up its inaccessible coastline and measuring glaciers in a race against time to discover why the ice in Greenland is vanishing so much faster than expected.

Gordon Hamilton, a Scottish-born glaciologist from the University of Maine’s Climate Change Institute, is packing up equipment at his base camp in Tasiilaq, a tiny, remote east coast settlement only accessible by helicopter and where huskies howl all night.

With his spiky hair and ripped T-shirt, Hamilton could be a rugged glaciologist straight from central casting. Four years ago he hit upon the daring idea of landing on a moving glacier in a helicopter to measure its speed.

The glaciers of Greenland are the fat, restless fingers of its vast ice sheet, constantly moving, stretching down into fjords and pushing ice from the sheet into the ocean, in the form of meltwater and icebergs.

Before their first expedition, Hamilton and his colleague Leigh Stearns, from the University of Kansas, used satellite data to plan exactly where they would land on a glacier.

“When we arrived, there was no glacier to be seen. It was way up the fjord,” he says. “We thought we’d made some stupid goof with the coordinates, but we were where we were supposed to be.” It was the glacier that was in the wrong place. A vast expanse had melted away.

When Hamilton and Stearns processed their first measurements of the glacier’s speed, they thought they had made another mistake. They found it was marching forwards at a greater pace than a glacier had ever been observed to flow before. “We were blown away because we realised that the glaciers had accelerated not just by a little bit but by a lot,” he says. The three glaciers they studied had abruptly increased the speed by which they were transmitting ice from the ice sheet into the ocean.

Standing before a glacier in Greenland as it calves icebergs into the dark waters of a cavernous fjord is to witness the raw power of a natural process we have accelerated but will now struggle to control.

Greenland’s glaciers make those in the Alps look like toys. Grubby white and blue crystal towers, cliffs and crevasses soar up from the water, dispatching millenniums of compacted snow in the shape of seals, water lilies and bishops’ mitres.

I take a small boat to see the calving with Dines Mikaelsen, an Inuit guide, who in the winter will cross the ice sheet in his five-metre sled pulled by 16 huskies.

It is not freezing, but even in summer the wind is bitingly cold and we can smell the bad breath of a humpback whale as it groans past our bows on Sermilik fjord. Above its heavy breathing, all you can hear in this wilderness is the drip-drip of melting ice and a crash as icebergs cleave into even smaller lumps, called growlers.

Mikaelsen stops his boat beside Hann glacier and points out how it was twice as wide and stretched 300 metres further into the fjord just 10 years ago. He also shows off a spectacular electric-blue iceberg.

Locals have nicknamed it “blue diamond”; its colour comes from being cleaved from centuries-old compressed ice at the ancient heart of the glacier. Bobbing in warming waters, this ancient ice fossil will be gone in a couple of weeks.

The blue diamond is one vivid pointer to the antiquity of the Greenland ice sheet. A relic of the last ice age, this is one of three great ice sheets left in the world, over three kilometres thick; the other two lie in Antarctica.

While similar melting effects are being measured in the southern hemisphere, the Greenland sheet may be uniquely vulnerable, lying much further from the chill of the pole than Antarctica’s sheets. The southern end of the Greenland sheet is almost on the same latitude as Britain’s Shetland islands and stroked by the warm waters of the Gulf Stream.

Driven by the loss of ice, Arctic temperatures are warming more quickly than other parts of the world: last autumn, air temperatures in the Arctic stood at a record 5° Celsius above normal. For centuries, the ice sheets maintained equilibrium: glaciers calved icebergs and sent meltwater into the oceans every summer; in winter, the ice sheet was then replenished with more frozen snow. Scientists believe the world’s great ice sheets will not completely disappear for many more centuries, but the Greenland ice sheet is now shedding more ice than it is accumulating.

The melting has been recorded since 1979; scientists put the annual net loss of ice and water from the ice sheet at 300 to 400 gigatonnes [300 to 400 cubic kilometres of water], which could hasten a sea level rise of catastrophic proportions.

As Hamilton has found, Greenland’s glaciers have increased the speed at which they shift ice from the sheet into the ocean. Helheim, an enormous tower of ice that calves into Sermilik fjord, used to move at seven kilometres a year. In 2005, in less than a year, it speeded up to nearly 12 kilometres a year. Kangerdlugssuaq, another glacier that Hamilton measured, tripled its speed between 1988 and 2005. Its movement – 2.5 centimetres every minute – could be seen with the naked eye.

The three glaciers that Hamilton and Stearns measured account for about a fifth of the discharge from the entire Greenland ice sheet. The implications of their acceleration are profound: “If they all start to speed up, you could have quite a large rise in sea level in the near term, much larger than the official estimate by the Intergovernmental Panel on Climate Change (IPCC) would project,” says Hamilton.

The scientific labours in the chill winds and high seas of the Arctic summer seem wrapped in an unusual sense of urgency this year. The scientists working in Greenland are keen to communicate their new, emerging understanding of the dynamics of the declining ice sheet to the wider world. Several point out that any international agreement forged at the United Nations climate change conference in Copenhagen in December will be based on the IPCC’s fourth assessment report from 2007. Its estimates of climate change and sea-level rise were based on scientific research submitted up to 2005; the scientists say this is already significantly out of date.

The 2007 report predicted a sea level rise of 30 to 60 centimetres by 2100, but did not account for the impact of glaciers breaking into the sea from areas such as the Greenland ice sheet. Most scientists working at the poles predict a one-metre rise by 2100. TheUnited States Geological Survey has predicted a 1.5-metre rise. As Hamilton points out, “It is only the first metre that matters”.

A one-metre rise – with the risk of higher storm surges – would require new defences for New York, London, Mumbai and Shanghai, and imperil swathes of low-lying land from Bangladesh to Florida. Vulnerable areas accommodate 10% of the world’s population – 600 million people.

The Greenland ice sheet is not merely being melted from above by warmer air temperatures. As the oceans of the Arctic waters reach record high temperatures, the role of warmer water lapping against these great glaciers is one of several factors shaping the loss of the ice sheet that has been overlooked until recently.

Fiamma Straneo, an Italian-born oceanographer, is laboriously winding recording equipment the size of a fire extinguisher from the deck of a small Greenpeace icebreaker caught in huge swells at the mouth of Sermilik fjord. In previous decades, the Arctic Sunrise has been used in taking direct action against whalers; now it offers itself as a floating research station for independent scientists to reach remote parts of the ice sheet. It is tough work for the multinational crew of 30 in this rough-and-ready little ship, prettified below deck with posters of orang-utans and sunflowers painted in the toilets.

Before I succumb to vomiting below deck – another journalist is seasick enough to be airlifted off the ship – I examine the navigational charts used by the captain, Pete Willcox, a survivor of the sinking of the original Rainbow Warrior in 1985. He shows how they are dotted with measurements showing the depth of the ocean but here, close to the east coast of Greenland, the map is blank: this part of the North Atlantic was once covered by sea ice for so much of the year that its waters are still uncharted.

Earlier in the expedition, the crew believes, the Arctic Sunrise became the first vessel to travel through the Nares Strait, west of Greenland, to the Arctic Ocean in June – an area once impassable at that time of year because of sea ice. The year when summers in the Arctic are predicted to be free of sea ice has fallen in just a couple of years, from 2100 to 2050 to 2030.

Jay Zwally, a NASA scientist, recently suggested it could be virtually ice-free by late summer 2012. From 2004 to 2008, the area of “multiyear” Arctic sea ice (ice that has formed over more than one winter and survived the summer melt) shrank by 1.54 million square kilometers, an area larger than France, Germany and the United Kingdom combined.

Undaunted by the sickening swell of the ocean and wrapped up against the chilly wind, Straneo, of Woods Hole Oceanographic Institution, one of the world’s leading oceanographic research centres, continues to take measurements from the waters as the long Arctic dusk falls.

According to Straneo, the rapid changes to the ice sheet have taken glaciologists by surprise: “One of the possible mechanisms which we think may have triggered these changes is melting driven by changing ocean temperatures and currents at the margins of the ice sheet.”

She has been surprised by early results measuring sea water close to the melting glaciers: one probe recovered from last year recorded a relatively balmy 2° Celsius at 60 metres in the fjord in the middle of winter. Straneo said: “This warm and salty water is of subtropical origin – it’s carried by the Gulf Stream. In recent years, a lot more of this warm water has been found around the coastal region of Greenland. We think this is one of the mechanisms that have caused these glaciers to accelerate and shed more ice.”

Straneo’s research is looking at what scientists call the “dynamic effects” of the Greenland ice sheet. It is not simply that the ice sheet is melting steadily as global temperatures rise. Rather, the melting triggers dynamic new effects, which in turn accelerate the melt.

“It’s quite likely that these dynamic effects are more important in generating a near-term rapid rise in sea level than the traditional melt,” says Hamilton. Another example of these dynamic effects is when the ice sheet melts to expose dirty layers of old snow laced withblack carbon from forest fires and even cosmic dust. These dark particles absorb more heat and so further speed up the melt.

After Straneo gathers her final measurements, the Arctic Sunrise heads for the tranquillity of the sole berth at Tasiilaq, which has a population of fewer than 3,000 but is still the largest settlement on Greenland’s vast east coast. Here another scientist is gathering her final provisions before taking her team camping on a remote glacier.

Several years ago Meredith Nettles, a seismologist from Colombia University, and two colleagues made a remarkable discovery: they identified a new kind of earthquake. These quakes were substantial – measuring magnitude five – but had been invisible because they did not show up on seismographs. (While orthodox tremors registered for a couple of seconds, these occurred rather more slowly, over a minute.)

The new earthquakes were traced almost exclusively to Greenland, where they were found to be specifically associated with large, fast-flowing outlet glaciers. There have been 200 of them in the last dozen years; in 2005 there were six times as many as in 1993.

Nettles nimbly explains the science as she heaves bags of equipment on to a helicopter, which will fly her to study Kangerdlugssuaq glacier. “It’s quite a dramatic increase, and that increase happened at the same time as we were seeing dramatic retreats in the location of the calving fronts of the glaciers, and an increase in their flow speed,” she says. “The earthquakes are very closely associated with large-scale ice loss events.”

In other words, the huge chunks of ice breaking off from the glaciers and entering the oceans are large enough to generate a seismic signal that is sent through the earth. They are happening more regularly and, when they occur, it appears that the glacier speeds up even more.

The scientists rightly wrap their latest observations in caution. Their studies are still in their infancy. Some of the effects they are observing may be short term.

The Greenland ice sheet has survived natural warmer periods in history, the last about 120,000 years ago, although the sheet was much smaller then than it is now. Those still sceptical of the scientific consensus over climate change should perhaps listen to the voices of those who could not be accused of having anything to gain from talking up climate change.

Arne Sorensen, a specialist ice navigator on the Arctic Sunrise, began sailing the Arctic in the 1970s. Journeys around Greenland’s coast that would take three weeks in the 1970s because of sea ice now take a day. He pays heed to the observations of the Inuit. “If you talk to people who live close to nature and they tell you this is unusual and this is not something they have noticed before, then I really put emphasis on that,” he says.

Paakkanna Ignatiussen, 52, has been hunting seals since he was 13. His grandparents travelled less than two kilometers to hunt; he must go more than 100 kilometres because the sea ice disappears earlier – and with it the seals. “It's hard to see the ice go back. In the old days when we got ice it was only ice. Today it is more like slush,” he says. “In 10 years, there will be no traditional hunting. The weather is the reason.”

The stench of rotting seal flesh wafts from a bag in the porch of Ignatiussen’s house in Tasiilaq as his wife, Ane, remarks that “the seasons are upside down”.

Local people are acutely aware of how the weather is changing animal behaviour. Browsing the guns for sale in the supermarket in Tasiilaq (you don’t need a licence for a gun here), Axel Hansen says more hungry polar bears prowl around the town these days. Like the hunters, the bears can’t find seals when there is so little sea ice. And the fjords are filled with so many icebergs that local people find it hard to hunt whales there.

Westerners may shrug at the decline of traditional hunting but, in a sense, we all live on the Greenland ice sheet now. Its fate is our fate. The scientists swarming over this ancient mass of ice, trying to understand how it will be transformed in a warming world, and how it will transform us, are wary of making political comments about how our leaders should plan for one metre of sea-level rise, and what drastic steps must be taken to cut carbon emissions. But some scientists are so astounded by the changes they are recording that they are moved to speak out.

What, I ask Hamilton, would he say to Barack Obama if he could spend 10 minutes with the US president, standing on Helheim glacier?

“Without knowing anything about what is going on, you just have to look at the glacier to know something huge is happening here,” says the glaciologist. “We can’t, as a scientific community, keep up with the pace of changes, let alone explain why they are happening.

“If I was, God forbid, the leader of the free world, I would implement some changes to deal with the maximum risk that we might reasonably expect to encounter, rather than always planning for the minimum. We won’t know the consequences of not doing that until it’s way too late. Even as a politician on a four-year elected cycle, you can’t morally leave someone with that problem.”

www.guardian.co.uk

Copyright Guardian News and Media Limited 2009

Homepage image by banyanman

Now more than ever…

chinadialogue is at the heart of the battle for truth on climate change and its challenges at this critical time.

Our readers are valued by us and now, for the first time, we are asking for your support to help maintain the rigorous, honest reporting and analysis on climate change that you value in a 'post-truth' era.

Support chinadialogue

发表评论 Post a comment

评论通过管理员审核后翻译成中文或英文。 最大字符 1200。

Comments are translated into either Chinese or English after being moderated. Maximum characters 1200.

评论 comments

Default avatar
匿名 | Anonymous

格陵兰的地震

这个信息令人震惊,格陵兰的冰川消融与这种新地震之间紧密相关,是不是说冰川对地壳的岩层产生影响,然后,地震活动又会加速冰川的运动?

Earthquake of Greenland

This news is astonishing. The glacier melting is closely associated to the new kind of earthquake, does it mean that glacier will affect crustal stratum , and the quakes will in turn accelerate the glacier flowing?
(translated by FF CHEN)

Default avatar
匿名 | Anonymous

动物

冰在减少,北极熊捕到海豹的机率也在减少,当地人也难找到鲸。也许有一天,就像东南亚国家的大象一样,北极熊也会冲到镇上去找食物。在饥饿的驱使下动物的行为是很疯狂的。

Animal

The ice is melting every day. Polar bears can capture less seals. Local people find less whales. Maybe one day, like the elepants in the south-estern aisan countries, the polar bear will risk to look for food in the town. The action driven by the hunger is crazy.
translated by tingting

Default avatar
匿名 | Anonymous

群策群力 根治高温

全球气候变暖是关乎人类生存的首要问题!金点子并非一定产生于国际高层!---哥本哈根会议不应限时!‘温室效应’的减排计划要年年问责!(几十年规划是不作为的自我解脱)······

Suggestions all the way to limit the high temperature

Global warming is a primary problem for the survival of all human beings! The best ideas are not always the thoughts from the international high level!--The Copenhagen Climate Congress should not be set a timetable! The recuction program on "Green Effect" should be called on responsibility every year! (The program for tens of years is just a self-release of nonfeasance.)

Default avatar
匿名 | Anonymous

不限时?

我理解3号评论的好意,对抗气候变化当然不能是随性而为,敷衍了事。

但是不限时的讨论?我想那样的话,在我有生之年都恐怕看不到任何协议的苗头。。。

Without time limit?

I appreciate comment number 3. Of course, one cannot confront climate change by going with the flow and working half heartedly. But discussions with no time limit? If that's the case, I fear that I’ll see no sign of any agreement during my lifetime.

Translated by smc.